Module 3: Syntax Analysis (Parsing)

This module is about the compiler's crucial "grammar check" phase: Syntax Analysis, also
known as Parsing. After the Lexical Analyzer has broken the raw source code into
meaningful "words" (tokens), the parser steps in to ensure these words are arranged
according to the language's rules, forming grammatically correct "sentences" and
"paragraphs." We'll explore the formal definitions of language structure, how parsers
systematically verify this structure, and the tools that automate this complex task.

1. Context-Free Grammars (CFG) and Language
Structure

Think of a Context-Free Grammar (CFG) as the definitive rulebook or blueprint for a
programming language's syntax. It's a formal, mathematical way to describe all the possible
legal sequences of words (tokens) that can form valid programs in that language. Without a
precise grammar, a compiler wouldn't know how to interpret your code.

A CFG is precisely defined by four components:

V (Variables / Non-terminals): These are abstract, conceptual symbols that
represent structures or constructs within the language. They are "non-terminal”
because they are not the final "words" of the program but rather categories that can
be broken down further (e.g., Statement, Expression, Program).
T (Terminals): These are the actual, tangible "words" or tokens that the lexical
analyzer produces. They are "terminal" because they cannot be broken down further
within the grammar rules; they are the basic building blocks (e.g., keywords like if,
operators like +, punctuation like ;, literal values like NUM, ID).
P (Productions / Production Rules): These are the core rules that specify how
non-terminals can be replaced by sequences of other non-terminals and/or terminals.
Each rule is like a recipe that tells you how to construct a larger grammatical unit
from smaller ones.

o Format: Non-terminal -> Sequence_of Symbols

o Example: Statement -> if (Expression) Statement else Statement
S (Start Symbol): This is a special non-terminal that represents the highest-level
grammatical category in the language. It's the ultimate goal of the parsing process. A
successful parse means that the entire input program can be derived from this start
symbol (e.g., Program).

Why CFGs are Important:

Formal Specification: They provide an unambiguous way to define the syntax of a
language.

Automatic Parser Generation: They are the input for tools that automatically build
the parser component.

Error Detection: If a program's structure doesn't conform to the CFG, the parser can
detect and report syntax errors.

Example CFG (for a tiny arithmetic calculator, expanded):

V = {Program, Statement, Expression, Term, Factor, IDList}
T={ID,NUM, +, -, */,(,), = ; var}

S = Program

P:

Program -> Statement Program
Program -> ¢ (epsilon denotes an empty string)
Statement -> var IDList ;
Statement -> ID = Expression ;
IDList -> ID

IDList -> ID , IDList

Expression -> Expression + Term
Expression -> Expression - Term
9. Expression -> Term

10. Term -> Term * Factor

11. Term -> Term / Factor

12. Term -> Factor

13. Factor -> (Expression)

14. Factor -> ID

15. Factor -> NUM

NGOk WDN =

2. The Parsing Process: Concepts, Trees, and
Derivations

Parsing is the compiler's "syntax police." Its job is to take the stream of tokens from the
lexical analyzer and determine if they form a grammatically valid program according to the
rules defined by the Context-Free Grammar. If the arrangement of tokens makes sense
structurally, the parser creates a hierarchical representation of the program. If not, it flags a
syntax error.

What Parsing Achieves:

e Syntax Validation: Ensures that your code follows the structural rules of the
language.

e Structure Representation: It builds a tree-like structure that captures the
relationships between different parts of your code.

Parse Trees vs. Abstract Syntax Trees (AST)

e Parse Tree (Concrete Syntax Tree):

o This is a visual, detailed representation of how the input string (sequence of
tokens) is derived from the start symbol of the grammar using the production
rules.

o Characteristics: Root is the start symbol; internal nodes are non-terminals
(corresponding to a production rule application); leaf nodes are terminal
symbols (tokens). Reading leaf nodes from left to right gives the original input.

o Purpose: Shows every single step of the derivation process, including
intermediate non-terminals used purely for grammatical structure.
o Example Parse Tree for var x , y ; using our calculator grammar:

Program
/ \
Statement Program (g)

var IDList ;
[\
ID , IDList
| !\
X ID (¢)
|
y

O
O
e Abstract Syntax Tree (AST):

o While a parse tree shows all grammatical details, an AST is a more compact
and essential representation of the program's structure. It focuses on the core
operations and relationships, stripping away syntactic details that aren't
directly relevant to the program's meaning.

o Why Abstract?: It removes "noise" from the parse tree (e.g., omitting
non-terminals like Term or Factor if their sole purpose was to enforce operator
precedence). It only keeps nodes that represent a computational or structural
meaning.

o Purpose: The AST is the preferred input for later compiler phases like
semantic analysis and code generation, as these phases care about the
meaning and relationships of operations.

o Example AST for x = a + b ; (simplified):

Assignment
I\
ID(x) Addition

Sentences and Sentential Forms - The Stages of Derivation

e Derivation: This is the process of repeatedly applying the production rules of a CFG,
starting from the start symbol, to transform one string of symbols into another.

e Sentential Form: Any string that can be derived from the start symbol of a grammar.
This string can contain a mixture of both non-terminal symbols (abstract categories)
and terminal symbols (concrete words). It's an intermediate stage in building a
complete program "sentence."

o Example: Statement Program, var IDList ; Program are sentential forms.

e Sentence: A special type of sentential form consisting only of terminal symbols. It
represents a complete and grammatically valid program (or a segment of one) in the
language.

o Example: var x, y ; is a sentence.

Leftmost and Rightmost Derivations - Following a Path in the Tree

When a sentential form contains multiple non-terminals, we choose which one to expand
next:

o Leftmost Derivation: Always chooses the leftmost non-terminal in the current
sentential form to replace. This is a common strategy for top-down parsers.

e Rightmost Derivation (Canonical Derivation): Always chooses the rightmost
non-terminal in the current sentential form to replace. This strategy is more common
for bottom-up parsers.

Both derivations produce the exact same final string and result in the same parse tree, even
if the order of rule applications differs.

3. Ambiguous Grammars and Resolution

A grammar is considered ambiguous if there is at least one sentence (a valid string of
terminals) in the language that can be derived in more than one distinct way. This means the
sentence has:

e More than one unique parse tree.
e Or, more than one distinct leftmost derivation.
e Or, more than one distinct rightmost derivation.

Why Ambiguity is a Problem: In programming languages, ambiguity leads to uncertainty
about the program's intended meaning. If A - B * C could be interpreted as (A -B) * C or A -
(B * C), the compiled code would behave differently, leading to unpredictable errors. A
compiler must have a single, definitive way to parse every valid program.

Classic Example: Arithmetic Expressions without Precedence/Associativity Rules
Consider this simple, ambiguous grammar:

E>E+E

E->E*E

E->ID

The input a + b * ¢ can result in two fundamentally different parse trees, implying different
orders of operation:

e Parse Tree 1 (implies (a + b) * c):

e Parse Tree 2 (implies a + (b * ¢)):

Since a single input string results in two different parse trees, this grammar is ambiguous.

Resolving Ambiguity: Compiler designers use two primary mechanisms:

1. Precedence Rules: Define the order in which operators are evaluated (e.g., * and /
have higher precedence than + and -).
o Implementation in Grammar: Rewrite the grammar by introducing new
non-terminals to create a hierarchy where higher-precedence operations are
"lower down" (closer to terminals) in the parse tree.
o Example (for * having higher precedence than +):
Expression -> Expression + Term
Expression -> Term
Term -> Term * Factor
Term -> Factor
Factor -> ID (or (Expression))
2. Associativity Rules: Define how operators of the same precedence are grouped
when they appear sequentially.

o Left Associativity: a-b - cis (a - b) - c. Implemented using left-recursive
production rules (e.g., Expression -> Expression + Term).

o Right Associativity: a =b =cis a = (b = c). Implemented using
right-recursive production rules (e.g., Assignment -> ID = Assignment).

By carefully applying these rules and rewriting the grammar, language designers ensure that
every syntactically correct program has only one unambiguous interpretation.

4. Parsing Strategies: Top-Down vs. Bottom-Up

The two fundamental strategies for parsing a program relate to how they build the parse

tree.

Top-Down Parsing (Predictive Parsing)

Approach: "Building from the Blueprint Down." Starts at the start symbol (the root of
the parse tree) and tries to expand it downwards to match the input tokens (the
leaves).
How it Works: The parser tries to predict which production rule for a non-terminal
should be used next to match the incoming input tokens. It essentially tries to
construct a leftmost derivation.
Characteristics:

o Easier to implement manually for simpler grammars.

o Requires the grammar to be free of left recursion and often left factoring.

o Less powerful than bottom-up parsers (can't handle as wide a range of

grammars).

Common Techniques: Recursive Descent Parsing, Predictive Parsing (LL(1)).

Bottom-Up Parsing (Shift-Reduce Parsing)

Approach: "Assembling from the Pieces Up." Starts with the input tokens (the leaves
of the parse tree) and attempts to combine them (reduce them) into higher-level
grammatical constructs, eventually reducing everything to the start symbol (the root).
How it Works: The parser scans the input, shifting tokens onto a stack. When the
top of the stack contains a sequence of symbols that matches the right-hand side of
a production rule, it "reduces" that sequence to the non-terminal on the left-hand side
of the rule. This effectively builds the parse tree from the leaves upwards towards the
root, constructing a rightmost derivation in reverse.
Characteristics:

o More powerful; can handle a larger class of grammars than top-down parsers.

o Often more complex to implement manually but well-suited for automatic

generation by tools.

o No issues with left recursion.
Common Techniques: Shift-Reduce Parsing, LR Parsers (LR(0), SLR(1), LALR(1),
LR(1)).

5. Bottom-Up Parsing in Detail: Shift-Reduce and SLR

This section dives into Shift-Reduce parsing, the core idea behind powerful bottom-up
parsers like the LR family.

Introduction to Shift-Reduce Parsing

Shift-Reduce parsing is a strategy that operates by trying to find the "handle" in the parser's
stack. A handle is a substring on the stack that matches the right-hand side of a grammar
production and can be "reduced" to its corresponding non-terminal.

The Parser's Tools:

Input Buffer: Where the raw stream of tokens from the lexical analyzer waits.
Stack: The parser's primary working area, storing a sequence of grammar symbols.
Parsing Table: Pre-computed from the grammair, it tells the parser what to do (shift,
reduce, accept, or error) based on the current state (top of stack) and the next input
token (the "lookahead" symbol).

The Core Actions: The parser continuously performs one of these actions:

e Shift: Takes the next incoming token from the input buffer and pushes it onto the
stack.

e Reduce: When symbols on the top of the stack match the entire right-hand side
(beta) of a production rule (Atobeta), the parser pops these matched symbols and
pushes the non-terminal A onto the stack. This signifies that a complete grammatical
construct has been recognized.

e Accept: If the stack contains only the start symbol (S’) and the input buffer is empty,
the entire program has been successfully parsed.

e Error: If the parser cannot perform a valid action, a syntax error is reported.

Example Walkthrough: Parsing a + b with Shift-Reduce (Assume simplified grammar: E -> E
+E | ID)

Initial state: Stack: $ | Input: a + b $ (where $ marks end of input)

Stack Input Action (determined by Explanation
Parsing Table)
$ a+b$ | Shifta Push a onto stack.
$a +b$ Reduce E -> ID ais an ID. Reduce ID to E. Pop a,
push E.

SE +b$ Shift + Push + onto stack.

SE+ b$ Shift b Push b onto stack.

SE+b $ Reduce E -> ID bis an ID. Reduce ID to E. Pop b,
push E.

SE+E $ Reduce E->E + E E + E is on top of stack. Reduce to

E. Pop E,+,E, push E.

SE $ Accept Stack has start symbol, input empty.
Success!

Viable Prefixes and Valid Items - Guiding the Parser's Decisions
To build robust bottom-up parsers, we use "items" to describe the parser's progress.

e Viable Prefix: Any prefix of a rightmost sentential form that can exist on the stack
during a shift-reduce parse. The parser's stack always holds a viable prefix.
o Example: $, $a, $E, $SE+, $E+b are all viable prefixes in the example above.
e Item (LR(0) Iltem): A production rule with a "dot" (.) placed somewhere in its
right-hand side. The dot indicates how much of the right-hand side has been
recognized so far.
o Format: A -> a. 3 (where a is matched, (3 is expected)
o Example Items (for E -> E + E and E -> ID):
m E->.E+E (expecting E + E)
m E->E .+ E (matched E, expecting + E)
m E->E+E.(matched E + E, ready to reduce to E)
m E ->ID . (matched ID, ready to reduce to E)
o Role in Parsing: LR parsers build "states," where each state is a collection of
items, representing a snapshot of all possible production rules the parser
could be trying to recognize.

Constructing LR(0) Sets of Items - Defining Parser States
To create an LR parser, we define all its possible "states" using "sets of LR(0) items."

1. Augmented Grammar: Add a new start production S'toS to the original grammar.
This ensures a single, clear reduction (S't0S.) signals successful parsing.

2. CLOSURE Operation: Expands a set of items. If an item Atoalpha.Bbeta (expecting
non-terminal B) is in a set, then for every production Btogamma, add Bto.gamma to
the set. Repeat until no new items can be added.

3. GOTO Operation: Determines the next state after recognizing a grammar symbol X.
For a set of items | and symbol X, it finds all items in | where the dot is before X
(Atoalpha.Xbeta), moves the dot past X (AtoalphaX.beta), and then takes the
CLOSURE of this new set of items.

4. Building the Canonical Collection of LR(0) Items: This algorithm generates all
unique states. It starts with an initial state |_0=CLOSURE(S't0.S). Then, for each
state | and every grammar symbol X that appears after a dot in |, it computes
J=GOTO(I,X). If J is new, it's added to the collection and processed.

The resulting collection of states forms the basis for constructing the LR parsing tables.

Constructing SLR Parsing Tables (Simple LR)

SLR (Simple LR) parsing leverages the LR(0) sets of items but adds the FOLLOW set to
make reduce decisions.

SLR Parsing Table Structure:

e ACTION Table: ACTION[State_i, Terminal_a] can be:
o shift j: Push a and transition to state j.
o reduce A -> [3: Pop |B| symbols, push A, and use the GOTO table.
o accept: Input successfully parsed.
o error: Syntax error.
e GOTO Table: GOTO[State i, NonTerminal_A] = State_j: The state to transition to
after reducing to NonTerminal_A from State .

Rules for Constructing SLR Parsing Table Entries:

e Shift Actions: For Atoalpha.abeta in state |_i where a is a terminal, and GOTO(I_i,a)
is |_j, set ACTION[i, a] = shift .

e Reduce Actions: For Atoalpha. in state |_i (entire right-hand side matched), then for
every terminal b in FOLLOW(A), set ACTION]i, b] = reduce A -> a. The FOLLOW(A)
set is crucial, ensuring a reduction is performed only if b can legally follow A.

Accept Action: If S't0S. is in state |_i, set ACTION]Ji, $] = accept.
GOTO Actions: If GOTO(l_i,A) is |_j (where A is a non-terminal), set GOTO[i, A] =]j.

SLR Conflicts: A grammar is SLR(1) if its SLR parsing table contains no conflicts. Conflicts
arise if a cell in the ACTION table has multiple entries:

e Shift/Reduce Conflict: A state implies both a shift on a terminal a and a reduce
action.

e Reduce/Reduce Conflict: A state implies reductions by two different rules for the
same lookahead terminal.
These conflicts indicate that the grammar is not suitable for SLR(1) parsing.

	Module 3: Syntax Analysis (Parsing)
	1. Context-Free Grammars (CFG) and Language Structure
	2. The Parsing Process: Concepts, Trees, and Derivations
	Parse Trees vs. Abstract Syntax Trees (AST)
	Sentences and Sentential Forms - The Stages of Derivation
	Leftmost and Rightmost Derivations - Following a Path in the Tree

	3. Ambiguous Grammars and Resolution
	4. Parsing Strategies: Top-Down vs. Bottom-Up
	Top-Down Parsing (Predictive Parsing)
	Bottom-Up Parsing (Shift-Reduce Parsing)

	5. Bottom-Up Parsing in Detail: Shift-Reduce and SLR
	Introduction to Shift-Reduce Parsing
	Viable Prefixes and Valid Items - Guiding the Parser's Decisions
	Constructing LR(0) Sets of Items - Defining Parser States
	Constructing SLR Parsing Tables (Simple LR)

